SEQUENCE MATCHING, SIMPLE SEARCHING

PGA Course in Bioinformatics
Tools for Comparative Analysis
April 29, 2002

Outline

- Sequence alignment algorithms
 - Rigorous Optimality:Needleman-Wunsch and Smith-Waterman
 - Rapid, heuristic algorithms
 - · BLAST
 - · FASTA
 - and their relatives
- Databases and Search Tools

MAJOR SITES WE WILL USE

- http://www.ncbi.nlm.nih.gov/
- http://workbench.sdsc.edu

MEDICAL SUBJECT HEADINGS

- **CONTROLLED Vocabulary**
- Indexing of articles, books, etc.
- Current version has over 300,000 terms
- Can download list and make your own assortment

Needleman Wunsch Algorithm

- **3** Global alignment
- Guaranteed to calculate an Optimal similarity score
- Begin at the beginning of each sequence and go to the end.
- Cannot detect domains

Smith-Waterman Algorithm

- Optimal Local Alignment
- Guaranteed to find all significant matches to a given query
- Takes the query sequence versus every sequence in the database
- Can be used with arbitrary scoring systems
- **COMPUTATIONALLY EXPENSIVE!!!**

Scoring Matrices

- Pelatively simple for DNA-gap penalties or mismatches-can be made to look at Pu/Py
- Protein matches look also at similarity (leu/ileu)

Protein Scoring Matrices

- Chemical similarity: 210 pairs of aa
- Nearness in Genetic Code
- **Chemical similarity, e.g., hydrophobicity
- Observed Substitution Schemes

Observed AA Substitution Matrices

- PAM
- **BLOSUM**

PAM: Point Accepted Mutation

- DAYHOFF et al.
- Residue replacement in related proteins
- A model of molecular evolution
- 1 PAM = average change in 1% of all amino acid possibilities
- 100 PAMs does not mean every residue is changed.

PAM continued

TIME is NOT correlated with PAM

Means different families of proteins evolve at different rates

BLOSUM

- **Block Substitution Matrix**
- → Henikoff and Henikoff, PNAS, 1992
- Number following indicates per cent identity within set, BLOSUM62=62% id
- Finds short, highly similar sequences

BLAST-Basic Local Alignment Sequence Tool

- Objective: find all local regions of similarity distinguishable from random
- Only local alignments permitted,
- Gaps permitted in version 2
- Statistically sound (Karlin and Altschul), but no guarantee of optimality

BLAST: Three Step Algorithm

- Compile a list of high scoring words of length w (w=4 for proteins, 12 for nucleic acids)
- Scan for word hits of score greater than threshold, T
- Extend word hit in both directions to find High Scoring Pairs with scores greater than S

Other BLAST Programs

- **BLASTN**: nucleic acid query to NA database
- BLSATP: Protein query to Protein database
- BLASTX: Translated nucleic acid query to Protein database
- TBLASTN: Protein query against (translated) nucleic acid database
- TBLASTX: Translated nucleic acid against translated nucleic acid database

OTHER BLAST VARIATIONS

- words from no-gap to gap, generate gapped alignments
- PSI-BLAST- Position Specific Iterated
 BLAST-use gapped BLAST, generate a
 Profile from multiple iterations used
 instead of the input and Distance Matrix

Limitations to BLAST

- Needs islands of strong homology
- Limits on the combination of scoring and penalty values
- The variants (blastx, tblastn, tblastx) use 6-frame translation-miss sequences with frameshifts)
- Finds and reports ONLY local alignments

BLAST RULES OF THUMB

- For short amino acid sequences (20-40), 50% identity happens by chance
- If A and B are homologous, and B and C are homologous, then A and C are, even if you can't see it.
- You can get similarity in the absence of homology for low complexity, transmembrane and coiled-coil regions. These have to be eliminated by you.

BLAST Significance

- *If you change scoring systems, you can still compare search results if you normalize the score.
 - S'=(lambdaS-lnK)/ln2. Lambda and K are associated with the scoring system.
 - S', with a given E, is significant if it is greater than N/E, N the size of the search space.

FASTA: FAST Alignment

- http://alpha10.bioch.virginia.edu/fasta/
- http://www2.ebi.ac.uk/fasta3
- http://workbench.sdsc.edu
- Rapid Global alignment
- Not a strong mathematical basis

FASTA: WHY USE IT?

Allow alignments to shift frames

LALIGN

- Essentially a FASTA derivative for local alignments
- Compares two proteins to identify regions of similarity
- Will report <u>several</u> sequence alignments within a given sequence
- Works for internal repeats that are missed by FASTA because of gaps.

SITEs for LALIGN

- http://fasta.bioch.virginia.edu/fasta/lalign.htm
- http://xylian.igh.cnrs.fr/bin/lalignguess.cgi
- http://biowb.sdsc.edu (registration necessary but painless)
- PALIGN http://fasta.bioch.virginia.edu/fasta/palign.htm (plots a graph of the areas of alignment)

ENTREZ: Linked Databases

http://www.ncbi.nlm.nih.gov/Entrez/

- Concept of Neighbor-usually BLAST relationship
- Precomputed=Fast
- Related sequence, structure neighbors, related articles

EST DATABASES: Quality issues

- **SEQUENCE QUALITY**
 - calculated error less than 1% (Phred-20)
 is the rule
 - frameshifts and stops common
 - Rules are usually observed by exception
 - There are lots of exceptions in the public data
 - Many 3' UTRs

EST Databases: Quality #2

CLONE QUALITY

- Over-representation
- Tissue specificity
- Developmental stage specificity
- Unprocessed mRNA clones
- Chimeras
- Contamination

EST Cluster Databases

- STACK-at SANBI http://sanbi.ac.za
- TIGR-animals, plants, other http://www.tigr.org/tdb/tgi.shtml
- **Unigene-NCBI**
 - Human, mouse, rat, cow,zebrafish
 - mRNAs
 - predicted mRNAs

UNIGENE

- **A LIST OF LISTS**
 - The cluster and known EST, mRNA pieces
 - Additional annotation-gene name, etc.
 - Distributed as a subset of dbest

NOT included in the BLAST searchable DB at NCBI

Caveats on Clusters

- ≥ Not stable
- Can go to complete cDNAs as available

LOCUSLINK

(http://www.ncbi.nlm.nih.gov/LocusLink)

- PA useful, searchable compendium of loci across human, mouse, rat,

 Drosophila and zebrafish
- Linked for PubMed, OMIM, RefSeq, Homologene data, Unigene, and Variation Data

Resources for Genomic Comparison

- GLASS-http://plover.lcs.mit.edu
- PipMaker: http://bio.cse.psu.edu
- Rosetta: http://plover.lcs.mit.edu(genes)
- SGP: htttp://soft.ice.mpg.de/sgp-1
- VISTA: http://www-gsd.lbl.gov/VISTA
- http://www.cse.ucsc.edu/~kent/xenoAli/index.html

EFFICIENT SEARCHING

- [≥] Use Wild Cards: #,\$,?,*
- **Use Boolean Operators**
 - Not
 - And
 - Or
 - Nor

Boolean Operators

- AND A and B BOTH
- OR A or B EITHER
- NOT B not A Have B, do not have A
- NOR A nor B A but not B OR B but not A

RULES OF THUMB

- Use an up-to-date database; repeat often
- Choose a fast algorithm
- Use the most recent version
- Work at the protein level--for a small amount of evolutionary change, DNA sequence contains less information about homology
- Respect your own intuition

Other Resources

- NCBI Education Page
 http://www.ncbi.nlm.nih.gov/Education/index.html
- **BCM Gene Finder

 http://searchlauncher.bcm.tmc.edu/docs/sl links.html
- EBI-SwissProt, TrEMBL, PIR, SRS, Tools http://www.ebi.ac.uk
- ExPASy-SwissProt, TrEMBL http://www.expasy.ch/
- DISC-DNA Information and Stock Center http://www.dna.affrc.go.jp